self-adjoint operator
- 网络自伴算子;自伴随算子;自伴算符;如同其他自伴算符;或自共轭算符
-
We represent a self-adjoint operator as the σ - weak integral of an operator-valued function .
并将任一自伴算子表示成某一算子值函数的σ-弱积分。
-
Whether a U-scalar operator is a quasi-affine transform of a self-adjoint operator , similar to a spectral operator of scalar type , is an open question .
类似与标型谱算子,U-标算子是否拟仿射相似于自伴算子是一“公开问题”。
-
However , a number of very important application problems cannot lead to self-adjoint operator for the transverse coordinate .
然而在应用中有大量问题并不能导致自共轭算子。
-
Completely continuous self-adjoint operator
完全连续自伴随算子
-
At the same time , by using special system of compact and self-adjoint operator & eigen - system the theorem of error estimate to the iteration array has been proved .
利用自共轭紧算子特有的特征系统,给出了迭代序列误差估计的简化证明。
-
Spectral Decomposition of Self-Adjoint Sturm-Liouville Operator in Limiting Circle Case in Direct Sum Spaces
直和空间上极限圆情形的自伴Sturm-Liouville算子的谱分解
-
Self-adjoint differential operator splines as limits of ect-polynomials
自共轭微分算子样条作为ECT-多项式的极限
-
Two sufficient conditions for the discreteness of two-order self-adjoint vector differential operator are given in last part .
第四章研究了二阶自伴向量微分算子,得到其谱是离散的两个充分条件。
-
Each observable is represented by a densely defined Hermitian ( or self-adjoint ) linear operator acting on the state space .
每个可见由详细定义的厄密共轭(者同一伴随矩阵)用于状态矢量空间线性操作者来表现。
-
Self-adjoint Domain of Dirac Operator with Symplectic Geometry Method
Dirac算子自伴域的刻划