inscribed triangle
- 内接三角形
-
Classical maximum area of inscribed triangle is extended in this paper .
推广了经典的圆内接三角形面积最大值问题。
-
It is obtained that the inscribed triangle with constant perimeter is isosceles when using mathematical analysis to maximize its area . Besides , an inequality of the maximum of area and perimeter is established , i.
运用分析的方法给出了圆内接三角形定周长的面积最大的三角形为等腰三角形,并且给出了周长和面积最大值的不等式关系。
-
Application of Affine Nature in the Demand of Maximum Area of Inscribed Triangle Within the Ellipse
仿射性质求椭圆内接三角形的最大面积
-
Two Inequalities for Inscribed Triangle and Inscribed Tetrahedroid
关于三角形与四面体的两个不等式
-
The traditional mathematical method to acquire the inscribed circle of a triangle is to fix the intersecting point of two angular bisectors as the center of the inscribed circle .
数学上求三角形内切圆传统的方法是求出三角形两个角的角平分线交点作内切圆的圆心,然后再求出内切圆的半径。
-
The local curvature of the discrete contour , which characterizes the bending of a contour associated with a direction , is defined using the center of the inscribed circle of the triangle derived from three consecutive contour nodes .
探讨了深度凹陷区域的分割,用离散轮廓上顺序3点所成三角形内切圆圆心来定义离散轮廓的曲率,该曲率既能反映轮廓的弯曲程度,又具有合理的方向。
-
Finally the parameters for generating an inscribed sphere from an initial cubic mesh are given . The Programming Solution of Inscribed Circle of Triangle
本文后半部分详细讨论了用此方法将初始立方体网格细分切割成球面的参数选取。三角形内切圆的计算机求解