finite geometry
- 有限几何(学)
-
In design theory and coding theory , we need finite geometry and Hadamard matrices [ 19,20,24 ] .
在组合设计和编码中,我们需要有限几何和Hadamard矩阵等工具。在组合的各个分支还可以发现更多的例子。
-
Finite geometry is an important branch in combinatorics mathematics . It provides plentiful sources for graph theory , combinatorics design , coding theory , etc. .
有限几何是组合数学中一个重要的分支,它为图论、组合设计和编码理论等方向提供了丰富的源泉。
-
It includes the methods of Gallager and Mackay . And some other construction methods based on finite geometry , graph theory and group theory are also depicted .
包括最早由Gallager提出的构造方法、Mackay对其改进的构造方法、基于有限几何、图论及群论上的构造方法等。
-
Construction of authentication codes with arbitration from finite affine geometry
利用有限仿射几何构作带仲裁的认证码
-
In this paper , the theories of elastic plastic mechanics and the finite deformation geometry are applied to study the question of surface displacement mechanism and displacement computation by mining below thick alluvia . It has an important guidance for controlling coal mining damage .
本文应用弹塑性力学理论及有限力学变形理论,研究了厚冲积层下开采地表移动的机理与移动量计算问题,对有效地控制地下开采损害具有重大指导作用。
-
Several Properties of Relation Power R ~ n of Finite Sets and Geometry Meaning
有限集上的二元关系幂的性质及几何意义
-
In this article , several properties of relation power Rn of finite sets and geometry meaning have been presented .
本文给出了有限集上的二元关系幂的Rn几个性质以及的Rn几何意义。
-
They are important and have been widely applied in many fields such as function approximation , computational geometry , finite element , algebraic geometry and so on .
它们在函数逼近、计算几何、有限元以及代数几何等领域都占有重要的地位,同时具有广泛的应用。