adaboost
- 网络算法;自适应增强;提升;自适应提升
-
Focusing on the effect of the light on screening vehicle-logo images , the paper proposes a vehicle-logo location method based on Adaboost algorithm .
根据车标在垂直方向上能量高且集中的特点,提出了一种新的快速且鲁棒性较高的车标定位方法。
-
The technology of in-plane rotated face detection and tracking in gray and complex background is deeply discussed in this paper . The detail is as bellow : AdaBoost training algorithm is improved .
深入研究了灰度图像复杂背景下的平面内多视角的人脸检测以及人脸跟踪技术,具体工作如下:改进了AdaBoost的训练算法。
-
AdaBoost algorithm is introduced in detail in this paper and rectangle feature , integral figure and so on are also analyzed . Then how to construct weak classifier , strong classifier and cascade classifier is discussed .
详细地介绍了AdaBoost算法的思想,包括矩形特征、积分图等概念,并对弱分类器、强分类器以及级联分类器的构造过程进行了阐述。
-
To address the problem of multicomponent patterns that many researchers have forgotten to consider it in their classification systems , an adaptive boosting multi-label learning algorithm ( AdaBoost . MC ) is developed based on decision trees , maximum a posteriori ( MAP ) and the robust ranking principles .
为解决许多研究者在其分类系统中未予考虑的多成份模式问题,开发了一种基于决策树、最大后验(MAP)和鲁棒排序原则的自适应boosting多标记学习算法(AdaBoost.MC)。
-
PCA + SVM , ICA + SVM , Haar-like + Adaboost + SVM and Gabor + Adaboost + SVM are implemented to recognize the face gender . The experiment results report that the method proposed in this paper gets the better performance and the accuracy is above 90 % .
本文在FERET图像库上作了大量有意义的实验,分别采用PCA+SVM,ICA+SVM,Haarlike+Adaboost+SVM和本文提出的Gabor+Adaboost+SVM方法进行人脸性别识别,实验结果表明本文提出的方法性能优越,识别率在90%以上。