Reduced density matrix
- 网络约化密度矩阵
-
N - representability Problem in the Reduced Density Matrix
约化密度矩阵中的N表示问题
-
The General Natures of the Reduced Density Matrix and the Natural Obital
约化密度矩阵与自然轨道的一般性质
-
Non-perturbation Master Equation for the Reduced Density Matrix of the J-C Model
J-C模型非微扰约化密度矩阵主方程
-
The general natures of the arbitrary order reduced density matrix and the relevant natural orbital have been researched .
本文讨论q阶约化密度矩阵和相应的自然轨道的一般性质。
-
However , this second approach is limited to some specific representations as it solves the equation of the reduced density matrix .
二是在一些特殊的表象中求解系统的约化密度矩阵方程。
-
The first order reduced density matrix ρ _1 for a polyatomic system having 2n electrons can be constructed resolving HFR Eq. from n basis .
对具2n个电子的多原子体系,其一阶约化密度矩阵可用n个基求解HFR方程的方式构出。
-
This method is not from the first principle . A better approach is based on the reduced density matrix , which eliminate the infinite number of the freedoms of the dissipative environment .
该方法不是从第一原理出发,因为耗散环境应该被看成是自由度为无限维的谐振子或原子系统,对它的求解最好的方式是求解约化密度矩阵方程。
-
First , the interaction is damping interaction and potential energy . We deduce easily the coherent term of quantum dynamical model ( the off-diagonal of reduced density matrix ) by improving the nature of displace operator and the nature of coherent states .
其一,仅有阻尼相互作用和势能相互作用,此时利用位移算符的性质和相干态的性质很方便地推导了量子动力学模型的相干项(约化密度矩阵的非对角元);
-
In the consideration of Milburn model of intrinsic decoherence , we investigate the entanglement between two two-level atoms interacting with a Fock state of single-mode quantized radiation field . The reduced density matrix of the atom system is given explicitly .
在Milburn内禀退相干模型下,研究了单模量子辐射场Fock态作用下两个二能级原子的纠缠,得到了原子约化密度矩阵的解析形式。
-
We model the system microscopically and derive rate equations for the reduced electron density matrix of the DQD .
我们模型化了此微观体系并且推导了该体系的电子约化密度矩阵的率方程。