R-module
-
Let R be an associative ring with identity and M a right R-module .
设R是有单位元的结合环,M是右R-模。
-
( vi ) every finitely presented torsionless right R-module is reflexive ;
(Vi)每个有限表现半自反右R-模是自反的;
-
R is left IF ring iff every finitely generated left R-module is embeddable in a flat module .
R为左IF环当且仅当任一有限生成左R&模均可嵌入平坦模;
-
R-module M is regular if and only if ( 1 ) M is locally Projective ;
R-模M是正则的当且仅当(1)M是局部投影的;
-
Finitely generated free R-module
有限生成自由R-模
-
Finitely generated graded R-module
有限生成分次R-模
-
Finitely generated projective R-module
有限生成射影R-模
-
This peper introduces the concept of direct-projective covers , and prove that a ring R is left perfect if and only if every left R-module ( flat left R-module ) has a direct-projective cover ;
本文引入直投射覆盖的概念,证明了环R为左完全环当且仅当每一个左R-模(平坦左R-模)具有直投射覆盖;
-
This paper proves that when T - is a Spectral Topology , R as a R-module is a r - finite dimensional module , if and only if RT - is a Semi-simple Artin Ring .
证明了在τ是谱拓扑的情形下,R作为R模是τ有限维的当且仅当Rτ是半单Artin环。
-
R / Soc ( R_R ) is a right V-ring if and only if every proper essential right ideal E of R is an intersection of maximal right ideals , if and only if there exists a singular semisimple right R-module which is quasi-dual .
设R为环,我们考虑下面两个条件。2每一个R的本质真右理想是极大右理想的交;3存在一个奇异半单右R-模是quasi-dual的。
-
A ring R is said to be a FCGP-ring if each FCG-projective R-module is projective , some equivalent conditions of FCG-projective modules are given , left V-rings and semisimple rings are characterized by FCG-projective modules , characters and equivalent conditions of FCGP-rings are discussed .
环R称为FCGP环,如果任一FCG投射R模都为投射模.给出了FCG投射模的等价条件,并用FCG投射模刻画了左V环和半单环。