Likelihood function
- 网络似然函数
-
Fuzzy Identification Method Based on Fuzzy Likelihood Function
基于模糊似然函数的模糊辨识方法
-
We construct cost function which combines the likelihood function and boundary constraint function .
它利用似然函数和边界约束方程构造代价函数,来描述区域特征。
-
Application of a New Fuzzy Likelihood Function on Clustering Analysis
一种新模糊似然函数在聚类分析中的应用
-
A new kind of fuzzy likelihood function
新的模糊似然函数
-
In the paper , the fuzzy likelihood function is utilized to cluster sample data .
提出一种基于模糊似然函数的模糊辨识方法。
-
The relationship between double exponential family and extended quasi - likelihood function
重指数族与推广的准似然函数间的关系
-
The efficiency of cox 's partial likelihood function for incomplete samples
Cox偏似然函数的不完全样本效率
-
A bisection algorithm for finding estimates of parameters in the maximum likelihood function
求最大似然函数参数估值的一种对分法
-
Begining with the first order MA model , analyzed it 's mathematical model and condition likelihood function ;
从一阶MA模型入手,分析一阶时间序列MA模型的数学模型及其条件似然函数;
-
A new fuzzy likelihood function is used to denotes the similarity degree of two fuzzy sets .
运用一种新的模糊似然函数,用以表示模糊集合之间的相似程度。
-
Analysis and Prediction of Probabilistic Risk of Rainfall-induced Landslides Based on Empirical Likelihood Function Model
基于经验似然比函数模型的降水型滑坡灾害概率风险分析与预测
-
The estimation method of time-variant parameters for disequilibrium models using maximum likelihood function with optimum moving window
非均衡模型时变参数的最优移动窗极大似然估计法
-
In Bayesian reference , marginal likelihood function involve to compute high dimensional complex integrand .
贝叶斯推断中边际似然函数涉及到维数较高的复杂积分的计算,因而精确地计算边际似然函数往往有困难。
-
Approximation for the Likelihood Function of Exponential Distribution under Multiply Type-I Censoring
定时截尾数据缺失场合下指数分布的似然函数的近似
-
We introduce the optimal parameter likelihood function , Bayesian grading and give the computational formula of these grading .
介绍了最优参数似然函数以及贝叶斯评分,并给出了这些评分的计算公式。
-
The advantage of the artificial immune algorithm in the optimization of the multi-dimension complicated function is used to optimize the likelihood function .
利用人工免疫算法在解决多维复杂函数优化问题时强大的全局寻优能力,有效地解决了似然函数的优化问题。
-
Mainly analyzed the Bayesian ARMA ( 1,1 ) model , and constructed the model condition likelihood function and the parameters ' posterior distribution .
构建了模型的条件似然函数和参数的先验分布,推导其参数的条件后验密度和边缘后验密度;
-
But it was difficult to calculate , because censored data in the form of samples of the likelihood function is very complex .
但计算很是困难,原因就是删失数据后样本的似然函数的形式很复杂。
-
On the one hand , by assuming the existence of hidden variable in EM algorithm , the likelihood function are greatly simplified ;
它通过假设隐变量的存在,极大地简化了似然方程;
-
By maximizing the two likelihood function , the detection task is achieved . ( 5 ) We propose a shared structure learning based detection approach .
通过两个似然函数的最大化,完成目标检测的任务。(5)提出了一种基于图像共享结构学习的目标检测方法。
-
A united logarithmic likelihood function based on the statistic probability model of image stochastic filed was built by using the multi-frame images .
该算法利用多帧湍流退化图像,建立了一个基于航天图像随机场概率模型的联合对数似然函数。
-
In traditional multiple hypothesis tracking ( MHT ) algorithm , only target location information has been used for truth likelihood function of tracks .
在传统的多假设跟踪(MHT)算法中,航迹置信度函数仅利用了目标的位置信息。
-
Then , the likelihood function of probability casual model is taken as antigen of immune genetic algorithm and solution of fault diagnosis as antibodies .
为了对电力变压器的绝缘故障进行诊断,提出了一种免疫遗传算法结合概率因果模型的故障诊断方法。
-
By using a posterior distribution logarithmic likelihood function , this paper defines posterior Fisher imformation ratio statistic and posterior likelihood distance statistic .
本文通过后验对数似然函数,提出了若干有偏估计的后验Fisher信息比和后验似然距离统计量。
-
First , a parallel edges model and corresponding likelihood function are proposed and Metropolis algorithm is used to accurately localize the edge of runways .
该方法将跑道识别分为定位和识别两个步骤:首先在定位步骤中基于变形模板模型理论,建立了跑道的平行线模型及似然函数,并采用Meropolis算法确定跑道的准确边界;
-
The ARMA model was used to describe the prior distribution of observed discharge and the AR model was adopted to simulate the likelihood function of forecasting error .
该模型采用ARMA模型描述实测流量的先验分布,采用AR模型模拟预报残差的似然函数,并假定先验分布和似然函数均服从正态分布。
-
This paper describes a new nonlinear filtering algorithm ( NLF ) for tracking maneuvering targets , presents reasonable maneuvering likelihood function , derives estimating equations .
描述了一种新的机动目标非线性跟踪算法(简称NLF算法),提出了合理了机动似然函数,导出了机动概率估值方程。
-
In this part , we give the description of the competing risk mixture model and the likelihood function with grouped data.3.Asymptotic properties of MLE .
这一部分我们给出了本文中竞争风险混合模型的描述及分组数据下的似然函数。
-
Conventional statistical clustering methods usually base on greedy principle . The common Metric for evaluating a clustering algorithm is the likelihood function or perplexity of the corpus .
传统的统计方法基于贪婪原则,常以语料的似然函数或困惑度(perplexity)作为评价标准。
-
By factoring of the likelihood function , the description of signal detection problem is achieved , and then iterative signal detection algorithm can be deduced by using sum-product algorithm .
通过对似然函数的分解,得到信号检测问题的因素图描述,在此基础上应用和积算法推导出信号检测的迭代算法。