Basic reproduction number
- 基本再生数
-
The basic reproduction number σ is identified .
给出了基本再生数σ的表达式。
-
The basic reproduction number , R_0 , is obtained for the Model .
得到了这类模型的基本再生数R0。
-
Thirdly , by use of Lyapunov function and theory of additive compound matrix , we find that the basic reproduction number Ro is a critical threshold .
最后,我们通过李雅普诺夫函数和加性复合矩阵理论发现基本再生数R0是一个临界阈值。
-
We found out the basic reproduction number and compared the efficiency of the three strategies for controlling the rabies : culling , vaccination , culling and vaccination .
通过寻找基本再生数对比了捕杀、免疫、捕杀和免疫相结合三种不同策略在控制狂犬病传播中的有效性。
-
It is shown that if the basic reproduction number σ 1 , the disease-free equilibrium is globally asymptotically stable and in such a case the endemic equilibrium does not exist .
当基本再生数σ1时,无病平衡点是全局渐近稳定的,在这种情况下,地方病平衡点是不存在的。
-
It is shown that a backward bifurcation will take place when this delayed effect for treatment is strong . Then , driving the basic reproduction number below the unity is not enough to eradicate the disease .
当染病者治愈延迟效应强时,将出现后向分支,此时基本再生数小于1不足以使得疾病消除。
-
If the susceptible cells proliferate linearly , the virus is cleared if the basic reproduction number R_0 ≤ 1 , and the virus persists in the host if R_0 > 1 ;
当考虑宿主体内健康细胞增长函数为线性时,我们证明了当基本再生数R0≤1,病毒在体内清除;
-
The virus is cleared if the basic reproduction number , R_0 ≤ 1 and the virus persists if R_01.The immune-free equilibrium E_1 and the endemic equilibrium E ~ exist and are asymptotically stable under some conditions .
当基本再生数R0≤1时,病毒在体内清除;而R01时,病毒在体内持续生存,分别得到了无免疫平衡点和地方病平衡点渐近稳定的条件。
-
In this paper , an epidemic model with population dispersal is established . The basic reproduction number , R_0 , is obtained for the model . It is proved that , if R_0 < 1 , then the disease-free equilibrium is globally asymptotically stable ;
建立了一类种群有迁移的流行病模型,得到了这类模型的基本再生数R0,证明了如果R0<1,则无病平衡点是全局渐近稳定的;